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Simulation of creep crack growth
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The elevated temperature response resulting from tensile creep of fiber reinforced ceramic
composites was modeled using Monte Carlo simulation. The model consisted of a
uniaxially loaded fiber tow aligned with the direction of applied load, and modeled the
growth of matrix cracks resulting from creep failure of bridging fibers. A creep strain rate
consisting of primary and steady state components was assumed, and each component
was modeled by a power law relationship. Power law creep exponents in the range of
2.0–2.5 for a selected SiC/SiC system at stress levels ranging from 60 MPa to 200 MPa were
evaluated. Fatigue-like behavior was predicted as a result of tensile creep, and a fatigue
exponent of 3.03 ± 0.07 was predicted for nominal stress levels less than 200 GPa. The
influence of initial crack length on failure lifetime was also studied, but was found to have
little influence on the predicted lifetime. The predicted failure response suggested a stress
dependent creep process could be used to model experimental data and evaluate the
failure mechanism of reinforced composites. C© 2002 Kluwer Academic Publishers

1. Introduction
Ceramic matrix composites (CMCs) are candidates for
applications in which creep life elevated temperature is
an important material characteristic. There is a need to
understand and predict the creep deformation behavior
of CMCs as a function of basic properties of the con-
stituent phases. Such information is vital to identifica-
tion and development of ceramic composites exhibit-
ing improved creep and elevated temperature fatigue
resistance.

Fatigue-like behavior of CMCs at high tempera-
tures has been reported [1–8]. Several degradation
mechanisms have been identified including creep,
fiber/environment reaction, and wear of the fiber sur-
faces during cyclic loading. Although it suspected that
multiple degradation mechanism may be simultane-
ously active in experimental studies, creep has been
identified as the predominant damage mechanism re-
sulting in fatigue-like behavior at elevated temperatures
[7–12].

Characterizing the physical and mechanical proper-
ties of fibers and composite materials requires statis-
tical and probabilistic concepts [13–16]. Monte Carlo
simulation is the numerical solution of analytical mod-
els containing probabilistic characteristics. In Monte
Carlo simulation, a computer calculates system behav-
ior following well-defined mathematical relationships
involving these probabilistic characteristics. The valid-
ity of the numerical solution is determined in part by
the appropriateness of the mathematical relationships
and in part by the values of the various probabilistic
characteristics. While any single solution will depend
on the specific values of the probabilistic characteris-

tics, performing the numerical solution many times can
give insight into the behavior of the physical system.

The purpose of this communication is to report pre-
dicted fatigue-like behavior resulting from tensile creep
of a unidirectional SiC/SiC ceramic composite. The
model described in this communication isolates creep
from the other possible degradation mechanisms. The
modeling approach was based on Monte Carlo simula-
tion, creep of bridging fibers in a cracked composite,
crack growth resulting from creep failure of bridging
fibers, and eventual global failure of the composite.

2. Monte Carlo creep model
The Monte Carlo model described in this communica-
tion simulated quasi-static crack growth due to creep of
fibers in a rectangular tow that was loaded externally
in tension. The sequence of steps used to simulate the
above system is described in the following sections.

2.1. Fiber tow
The material was assumed to be a rectangular fiber tow
that consisted of uniformly spaced, unidirectional fibers
impregnated in the matrix, and the fibers were arranged
in 12 rows and 41 columns for a total of 492 fibers
[13–15]. The fibers were aligned in the direction of an
externally applied load as shown in Fig. 1.

Matrix cracking, typically originating from preexist-
ing flaws, was included in the model as a single matrix
crack with intact bridging fibers over its entire surface.
The crack was oriented perpendicular to the applied
stress as shown in Fig. 1. The initial length of the ma-
trix crack could be selected during initialization of the
model, and was typically set at 5% of the tow length.
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Figure 1 Schematic representation of composite modeled in this
communication.

A crack length equivalent to 5% of the tow length
would result in immediate failure of a monolithic ma-
terial. However, bridging fibers in a composite mate-
rial could stabilize such a crack under lower levels of
applied stress. Crack stability in the model described
in this communication was determined using the con-
cepts of linear elastic fracture mechanics [17]. The ap-
plied stress intensity factor, KI, was computed and com-
pared with the critical stress intensity factor KIC If KIC
was greater than KI, the crack was stable. Otherwise
the crack was extended to the next fiber column and
checked for stability. This process of crack extension
(i.e., crack growth) increased the number of bridging
fibers by one entire column of fibers, and was repeated
until crack stability was achieved.

2.2. Distribution of load within fiber tow
External load was distributed to the individual fibers
using an isostrain assumption [13–15]. This approach
assumed that the individual fibers and the matrix were
in a state of uniform strain. The matrix that was in front
of the crack tip was assumed to carry mechanical load
that was of the same magnitude as the load carried by
the fiber. This assumption was reasonable since both the
matrix and the fiber modeled in this study were silicon
carbide. The load acting behind the crack tip was car-
ried entirely by the bridging fibers. The stress on the
individual fibers (σi, j ) behind the crack tip (i.e., bridg-
ing fibers) under isostrain conditions was calculated
from [13]:

σi, j =
(

σapp

V f

)(
Ei, j

Ē

)
(1)

where σapp = applied stress, V f = the fiber volume frac-
tion, Ē = average modulus of fiber array, Ei, j =
modulus of the fiber i , j , i = horizontal position of fiber
in the tow, j = vertical position of fiber in tow.
Since both fibers and the matrix were assumed to take
the load in front of the crack tip, the stress on the fibers
in front of the crack tip was taken as σapplied. In this
manner, the bridging fibers were modeled as existing
under higher states of stress than fibers in front of the
crack tip.

The total force on all bridging fibers normalized to
the surface area of the crack is given by [15]:

σb = a(σcrack)

S
(2)

where σb = equivalent stress resulting from bridging
fibers, S = surface area of the crack, a = total area of

all individual fibers in the bridging zone, σcrack = sum
of stresses carried by the fibers behind the crack tip.
The applied stress intensity factor, KI, for the composite
was calculated by [15]:

KI = Y (σapp − σb)
√

Cπ (3)

where C = the crack length, Y = a constant (π1/2 for
an edge loaded surface crack).
Using Equation 3, the existence of bridging fibers ef-
fectively reduced the influence of applied loads [17].
Equation 3 was used to compare to the applied stress
intensity to the fracture toughness to assess the mechan-
ical stability of the crack.

3. Creep strain rate model
The total creep rate, ε̇tot, was expressed as the sum of
the primary creep rate, ε̇p, and the steady state creep
rate,ε̇s , according to [18]:

ε̇tot = ε̇p + ε̇s (4)

Primary creep was determined from [18]:

ε̇p = Aσ ptm (5)

where A = stress independent constant, σ = stress, t =
the time elapsed since the loading, p = stress expo-
nent for primary creep, m = time exponent for primary
creep.
Negative values of m would correspond to a decreasing
primary creep rate with time.

Steady state creep strain rate was modeled as a power
law [19]:

εs = Bσ nss (6)

where σ = stress, nss = stress exponent for steady-state
creep, B = a constant.
The physical effect of creep was modeled using a con-
stant volume assumption, and this assumption resulted
in a reduction in fiber cross-sectional area as a conse-
quence of creep according to [13]:

Anew
i, j = Aprev

i, j

εtow + 1
(7)

where Anew
i, j =cross sectional area of fiber i , j after creep,

Aprev
i, j = cross sectional area of fiber i , j prior to creep.

The stress in the individual fibers after creep was then
calculated from:

σ new
i, j = Fi, j

Anew
i, j

(8)

where σ
prev
i, j = stress in fiber i , j after creep, Fi, j = force

acting on fiber i , j .
The combination of Equations 7 and 8 resulted in an
increase in stress for all fibers undergoing creep. Each
iteration of the simulation in which the fibers were al-
lowed to creep was known as a timestep. The reduction
of fiber radius in each timestep resulted in increased
stress on the fiber under a constant load.

4198



T ABL E I Monte Carlo variables of fiber characteristics [13–15] used
in this study. SD signifies the standard deviation

Value
Fiber Distribution
characteristic type Mean SD Weibull modulus

Radius Gaussian 6.9 υm 1.3 υm
Strength Weibull 1.1 GPa 3.6
Modulus Gaussian 145 GPa 30 GPa

T ABL E I I Standard mechanical parameters [13–15] used in the nu-
merical simulation

Parameter Value

Initial crack length (ao) 5% of tow length
Stress intensity factor (KI) 4.0 MPa · m1/2

Applied stress (σapp) 110 MPa
Fiber volume (V f ) 40%
Array size of the fibers (i X j) 12 × 41
Stress exponent (nss) 2

The stress on the fiber increased until the fiber stress
reached the fiber strength. At this point the fiber broke,
and the load on the broken fiber was distributed to un-
broken fibers using an inverse square law previously
reported [13–15]. Following load redistribution, crack
stability was checked, the matrix crack was allowed
to grow as appropriate, creep was applied to individ-
ual fibers, and fibers stresses were again compared to
fiber strengths. In this way the Monte Carlo simulation
was iterated until complete failure all fibers in the tow
occurred.

The details of the numerical approach have been pre-
viously reported [13–15]. The parameters and the sta-
tistical distributions used in the Monte Carlo model de-
scribed in this communication are given in the Table I.
Chi-Square and Kolmogorov-Smirnov statistical tests
were used to verify the randomness and compatibility
of parameter distributions generated [13–15]. The stan-
dard mechanical properties of the composite are given
in Table II, and these values were used as default values
unless other values were selected during initialization
of the model.

4. Results
Pure mechanical failure of a small number of fibers was
predicted on initial application of stress. This mechani-
cal failure occurred in weaker fibers generated from the
strength distribution, and was consistent with previous
numerical studies [13–15, 20]. The simulation allowed
all fibers to creep under load. The fibers in front of
the crack carried smaller loads than the bridging fibers
since a portion of the load in front of the crack was car-
ried by the matrix phase. Accumulation of creep strain
led to the failure of some bridging fibers, which led to
the weakening of the bridging zone. This weakening of
the bridging zone led to crack growth until the crack
stabilized by formation of additional bridging fibers.
This process was continued until all the fibers were
broken.

There were three distinct regions in the simulated
failure of a fiber tow resulting from creep failure of
bridging fibers: crack growth incubation, crack growth,

Figure 2 Predicted crack length (as a fraction of tow length) and per-
centage of failed fibers as a function of time. The input parameters used
were those given in Tables I and II with the exception of applied stress
which was 85 MPa.

and fiber domination. The three distinct regions of be-
havior are shown in Fig. 2. Crack growth incubation
was an initial period where small numbers of failed
bridging fibers resulted in crack stability in the ab-
sence of the formation of new bridging fibers by crack
growth. The crack growth incubation region was fol-
lowed by the crack growth phase in which the crack
propagated through the matrix at a fairly constant rate
giving way to the fiber domination phase. Fiber domi-
nation was characterized by complete matrix cracking
and a short period of rapid fiber failure leading to fail-
ure of the composite. The most interesting character-
istics illustrated in Fig. 2 are the length of the crack
incubation region, the instability point (iteration step
where the crack became unstable), crack propagation
rate, fiber domination point (iteration step where the
complete matrix was cracked and fibers dominated the
system), and lifetime. Each of the above characteris-
tics was studied by systematically varying the standard
mechanical parameters given in Table II.

The total number of timesteps indicates the total
number of numerical creep steps completed for the fail-
ure of the whole fiber tow. In this way the number of
timesteps to failure gives a relative measure of the pre-
dicted lifetime of the fiber tow. As shown in Fig. 2, the
total number of timesteps required for complete fail-
ure of the fiber tow was 137. There was complete fiber
domination beginning at timestep 126. It is apparaent
from Fig. 2 that 90% of fibers broke in the last 10% of
lifetime, and this prediction agrees well with published
data [2–7].

Since the primary objective of a Monte Carlo simu-
lation is to extract information about typical system be-
havior, the average response of several individual solu-
tions is typically computed. One concern is the number
of individual solutions necessary to generate a mean-
ingful average. The convergence analysis of the Monte
Carlo simulation described in this communication for
up to 100 independent solutions of the simulation is
shown in Fig. 3. This convergence analysis showed that
the simulation yielded identical values of the mean and
standard deviation when the number of individual so-
lutions in each data set was above 35. Therefore, 50
independent simulations were conducted for each vari-
ation of a mechanical parameter in the current study.
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Figure 3 Convergence analysis of the Monte Carlo simulation described
in this communication. The input parameters were held constant at the
standard values (Tables I and II).

Figure 4 Predicted lifetime as a function of applied stress from 60 to
200 MPa. There are 50 individual solutions in each data set. The error
bars are ± one standard deviation.

4.1. Effect of applied stress
The primary motive for the simulation described in
this communication was to model the effects of ap-
plied stress on the creep life of the fiber tow. The sim-
ulation was used to model the effect of applied stress
levels ranging from 60 MPa to 200 MPa. The average
predicted lifetime for 50 independent simulation solu-
tions as a function of applied stress is shown in Fig. 4.
The plot clearly shows that the predicted lifetime of the
fiber tow decreased nonlinearly as the applied stress in-
creased. In addition, the standard deviation of the 50
individual solutions, shown as error bars in Fig. 4, de-
creased as the applied stress increased.

Fatigue-type behavior is characterized as the non-
linear decrease with lifetime with increased applied
stress, and is traditionally modeled with the following
expression [13]:

t f = A(σapp)−n f (9)

where t f = lifetime, A = constant, n f = fatigue
exponent.
Shown in Fig. 4 is the best-fit curve for the predicted
lifetime as a function of applied stress using the stan-
dard form given Equation 9. The fatigue exponent and
95% confidence bound was computed to be 3.03 ± 0.07.
This fatigue exponent predicted from the model de-
scribed in this communication compares very well to
the reported value of 2.92 ± 0.04 for this composite
material [4, 5].

It was observed that there was no predicted crack
propagation even in the absence of bridging fibers if
the applied stress was less than 68.5 MPa. This lack
of crack propagation was due to the critical effective
stress that resulted in crack instability in the absence of
bridging fibers as given by:

σcritical = KIC

Y
√

πC
(10)

where σcritical = critical effective stress for crack un-
stable, KIC = fracture toughness of the composite,
C = initial matrix crack length.
From Equation 10, it can be concluded that if the ap-
plied stress is below the critical effective critical stress,
then there will not be any crack growth in the compos-
ite. If all the bridging fibers were assumed to be intact,
then the critical applied stress to cause the crack growth
(at a crack length of 5% of the tow length) was ap-
proximately 82.9 MPa. The above results are in agree-
ment with the possibility of an infinite lifetime for low
stresses (fatigue limit), and are consistent with previous
numerical studies [15].

4.2. Effect of initial crack length
The influence of the initial matrix crack length and its
effect on the predicted lifetime of the fiber tow was
examined. A set of simulations was completed in which
the initial matrix crack length was systematically varied
from 2.5% of tow length to 100% of tow length (fully
cracked matrix). Fig. 5 shows the relationship between
initial matrix crack length and lifetime. Fig. 5 shows
that there is little functional dependence of initial matrix
crack length on lifetime beyond an initial matrix crack
length 5% of tow length. This observation suggests that
the lifetime of the fiber tow depended largely on the
fiber behavior during the fiber-dominated region rather
than on the initial matrix crack length for the standard
mechanical parameters, Table II.

The initial matrix crack length was not stable for
lengths from 2.5% to 5% of the fiber tow length for
an applied stress of 110 MPa. The crack propagated to
a longer length under applied stress irrespective of its
initial length. This observation can be explained using
the following fracture mechanics relation [21]:

Figure 5 Effect of initial crack length on the predicted lifetime. The
data points are averages of 50 individual solutions, and the one standard
deviation error bars were smaller than the height of the data points. All
input parameters were held constant at the standard values (Tables I
and II) except for initial crack length.

4200



Ccritical = 1

π

[
KIC

Y (σapp − σb)

]2

(11)

where Ccritical = critical crack length below which crack
is unstable, KIC = fracture toughness of the composite.
From Equation 11, it may be observed that there is a
critical crack length below which the crack is unsta-
ble for a given level of applied stress. At a matrix crack
length greater than the critical value, the increased num-
ber of bridging fibers and corresponding increase of the
effective stress resulting from the bridging fibers, σb,
provided crack stability. The instability of matrix crack
lengths less than the critical value led to crack growth
until the crack attained stability by increased numbers
of bridging fibers. However, an extremely short initial
matrix crack length would be inherently stable for lower
applied stress levels, Equation 10, and would lead to in-
creased creep lifetime due to an extensive crack growth
incubation region, Fig. 2.

4.3. Effect of steady-state creep
stress exponent

The steady-state creep strain rate was modeled using a
power law, Equation 6. The influence of the steady-state
creep stress exponent (nss) on the predicted lifetime
of the fiber tow was studied. The stress exponent was
varied from 2 to 2.5 and the results are plotted in Fig. 6.
It is apparent in Fig. 5 that the predicted lifetime was
very sensitive to the changes in the steady-state creep
stress exponent. For steady-state creep stress exponent
values that are greater than 2.25, the predicted failure
of all the fibers in the tow occurred in only one or two
timesteps for an applied stress of 110 MPa (10% of the
average fiber strength) and an initial matrix crack length
of 5% of the tow length. It was also observed that the
matrix was not fully cracked in the above cases, and the
fiber bridging mechanism seem to have been dominated
by the creep of the fibers.

Steady-state creep stress exponents as high as 6 have
been reported for SiC/SiC composite systems [1–3],
and these systems exhibited appreciable creep lifetime.
The short creep lifetime predicted for steady-state creep
stress exponents in excess of 2.25 (Fig. 6) does not
conflict with these experimental results. The creep life-

Figure 6 Influence of the steady-state creep stress exponent on the pre-
dicted lifetime. All input characteristics except the steady-state creep
stress exponent were held constant at the standard values (Tables I
and II). The data points of averages of 50 individual solutions, and the
one standard deviation error bars are smaller than the data points.

time is determined by the cumulative influences of
steady-state creep stress exponent, applied stress, fiber
strength, and initial matrix crack length. The model
parameters used to predict the behavior shown in Fig. 6
included high values of applied stress (10% of the
fiber strength) and a relatively large initial matrix crack
length (5% of the tow length). It is quite reasonable
to expect appreciable creep lifetime with a steady-state
creep stress exponent as high as 6 for composites under
lower applied stresses and/or much smaller initial crack
lengths. However, the general trend evident in Fig. 6 of
a nonlinear decrease in creep lifetime with increased
steady-state creep stress exponent is still predicted for
other values of applied stress and initial matrix crack
length.

5. Conclusions
Tensile creep behavior and elevated temperature fatigue
of fiber reinforced ceramic composites were investi-
gated using a Monte Carlo model. The model consisted
of a uniaxially loaded fiber tow composed of unidi-
rectional fibers aligned in the direction of the load. The
model described in this communication specifically ad-
dressed creep degradation of fibers bridging relatively
large matrix cracks. Relatively large matrix cracks are
known to be mechanically stable in the presence of
bridging fibers. The degradation of these bridging fibers
was modeled as a time-dependent failure of bridging
fibers, and the corresponding mechanical instability of
the matrix crack. The model permitted an increase in
bridging fibers as a result of growth of the matrix crack.
In this manner, quasi-static crack growth was modeled
as periods of crack stability and bridging fiber degra-
dation followed by crack growth and formation of new
bridging fibers.

The Monte Carlo variables were the fiber radius, elas-
tic modulus, and strength. Both fiber and matrix phases
were modeled as exhibiting creep, and the result of
creep was modeled as increased stress in each phase.
The model assumed a steady-state creep strain rate,
which was approximated by a power law relationship.
Applied stress was distributed through the composite
using an isostrain assumption. The failure stress was
used as the critical stress predicting failure. The creep
lifetime corresponded to failure of all fibers.

The effects of steady-state creep stress exponents in
the range of 2–2.5 for a selected SiC/SiC system at
stress levels ranging from 60 MPa to 200 MPa were
examined. Incubation of matrix crack growth, crack
growth, and a region of fiber domination were predicted
to precede final composite failure. It was predicted that
the majority of fiber damage occurred very late in the
creep lifetime with 90% of the fibers failing in the last
10% of the creep lifetime.

It was predicted that the creep lifetime of the com-
posite was quite sensitive to the changes in the steady-
state creep stress exponents. The initial crack length
was predicted to have no effect on the creep lifetime
for relatively large matrix cracks. Fatigue-like behav-
ior, a nonlinear decrease in creep lifetime with increased
applied stress, was predicted. A fatigue exponent of
3.03 ± 0.07 was predicted for nominal stress levels less
than 200 GPa.

4201



References
1. P . R E Y N A U D , D. R O U B Y , G. F A N T O Z Z I , F . A B B E and

P . P E R E S , Ceramic Transactions 57 (1995) 95.
2. L . P . Z A W A D A , L . M. B U T K U S and G. A. H A R T M A N ,

J. Amer. Ceram. Soc. 74(11) (1991) 2858.
3. S . R A G H U R A M A N , J . F . S T U B B I N S , M. K. F E R B E R and

A. A. W E R E S Z C Z A K , Journal of Nuclear Materials 212//215(9)
(1994) 840.

4. M. H. H E A D I N G E R , P . G R A Y and D. H. R O A C H , Pre-
sented at the Composites and Advanced Structures Cocoa Beach
Conference, January 1995.

5. M. J . V E R I L L I , A . M. C A L A M I N O and D. N. B R E W E R ,
presented at the Composites and Advanced Structures Cocoa Beach
Conference, January 1995.

6. H . T . L I N , P . F . B E C H E R , K. L . M O R E , P . F .
T R O T O R E L L I and E . L A R A-C U R Z I O , Oak Ridge National
Laboratory, 1996.

7. E . Y . S U N , S . T . L I N and J . J . B R E N N A N , J. Amer. Ceram.
Soc. 80(3) (1996) 3065.

8. J . W. H O L M E S , J. Mater. Sci. 26 (1991) 1808.
9. D . B . M A R S H A L L and B. N. C O X , Acta Metallurgica 35(11)

(1987) 2607.
10. M. R . B E G L E Y , A. G. E V A N S and R. M. M C M E E K I N G ,

Journal of the Mechanics and Physics of Solids 43(5) (1995) 727.

11. F . E . H E R E D I O A , J . C . M C N U L T Y , F . W. Z O K and
A. G. E V A N S , J. Amer. Ceram. Soc. 78(8) (1995) 2097.

12. J . A . D I C A R L O , J. Mater. Sci. 21(1) (1986) 217.
13. D . N . C O O N and A. M. C A L O M I N O , ibid. 36 (2001) 2597.
14. F . M A C D O N A L D and D. N. A. M. C O O N , ibid. 36 (2001)

1681.
15. D . N . C O O N and A. M O T K U R , ibid. 35 (2000) 3207.
16. D . H . W A G N E R , “Application of Fracture Mechanics to Com-

posite Materials,” Vol. 6 (Elsevier Science Publishing Company,
1989) p. 39.

17. D . B . M A R S H A L L and A. G. E V A N S , “Fracture Mechanics
of Ceramics,” Vol. 7 (1986) p. 1.

18. Y . H . P A R K and J . W. H O L M E S , J. Mater. Sci. 27 (1992)
6341.

19. S . R . C H O I , J . A . S A L E M and N. N. N E M E T H , ibid. 33(5)
(1998) 1325.

20. D . N . C O O N , J. Materials Science and Technology 9(2) (2001)
65.

21. R . W. H E R T Z B E R G , “Deformation and Fracture Mechanics of
Engineering Materials” (John Wiley & Sons, 1989).

Received 20 July 2001
and accepted 21 May 2002

4202


